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ABSTRACT

An algorithm for solving Dantzig's generalized programming formula-
tion of continuous-time linear~system optimal control problems is devel-
oped. Dantzig's work is extended to include continucus-time versions of
quadratic loss criteria and minimum fuel problems. New results in param-
etric linear and quadratic programming problems, where the parameter
dependence is nonlinear, are derived with internal schemes to avoid
cycling due to degeneracy. Finite switching results in the completely
linear system, including the minimum fuel and minimal time problems,
are presented without assuming Pontryagin's general position principal
or uniqueness properties., The procedure initially finds a feasible and
edmissible solution to the continuous-time control problem without using
discrete approximations., The algorithm continues to converge monoton-
ically to the optimal solution while remaining feasible and at each
stage, provides a bound on the value of the loss function for termina-
tion purposes. This procedure is well suited for systems with a rela-
tively high number of state variables and control inputs for whkich dis-

crete time linear or quadratic programming models become too large.
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Chapter 1

INTRODUCTION

With the advent of efficient and large-scale mathematical program-
ming techniques, computationally feasible methods are available for op-
timal control problems. The pjurpose of this paper is to present an
algorithm for solving continuous-time optimal control problems with
linear dynamics and various loss criteria. Due to the mathematical
programming techniques used in the algorithm, it is well suited for
large-scale control problems, i.e., control problems with large numbers
of state variables and time-varying control inputs. This work consists

of two main results that are combined to develop the algorithm,

In Chapter II, we describe the types of control problems considered,

including basic definitions and notations for these problems. The basic
results in control theory and certain necessary conditions for optimal
control, as described by Pontryagin et al. [1], are also presented.

In Chapter III, the algorithms and basic theorems for linear pro-
gramming and the simplex method [2], quadratic programming and the
complementary pivot theory [3], and the Dantzig-Wolfe generalized pro-
gram [2] are presented.

The first main result, an algorithm for solving parametric linear
and quadratic programming problems, when the objective function is non-
linear in the parameter, is presented in Chapter IV. Also presented is
the class of nonlinear functions for which this algorithm is valid. The
finiteness of the algorithm, including avoidance of cycling due to de-
generacy, is then proven, The characteristics of the optimal solution
as a function of the parameter are also described.

The second result, an eatension of Dantzig's [9] formulation of
optimal control problems as generalized programs, is presented in Chap-
ter V. It is shown that any optimal control problem with the following
characteristics may be formulated as a generalized orogram: (1) the
svstem must initiate from some point in a specified region of the state
space; (2) the state at the fixed terminal time can be chosen from an-

other convex region in the state space (fixed initial and final points
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are included in these definitions); (3) the state of the system is con-
trolled by linear differential equations; (4) the admissible control
region is a convex polyhedral set (for each point in time) in the con-
trol space; (5) the loss criteria is a linear functional in the state
and control and/or a quadratic functional in control and/or the absolute
value of the control inputs (minimum fuel), or the minimum time. It is
further shown that these continuous-time optimal control problems have
an equivalent generalized programming formulation in which the master
problem is a linear program of two or three plus the dimension of the
state space. The subproblem to the master program is a parametric pro-
gramming problem of the control space dimension and is solvable by the
methods presented in Chapter IV, This subproblem yields an extreme ad-
missable control that, when used with previously found extreme admi:s-
sable controls, gives a solution that is closer to a feasible or an
optimal one,

The algorithm and its variants are presented in the second part of
Chapter V. A {low chart of the algorithm is given, along with a descrip-
tion of each execution. Also included is an initiating phase that ter-
minates in a feasible solution of the control problem. On completion of
the initiating phase, the algorithm maintains a feasible control while
obtaining new controls; these new controls yield better objective values
without disturbing the feasibility. Upper and lower bounds on the op-
timal objective value are provided at each stage of the algorithm.

In Chapter VI, the characteristics of the optimal controls, without
any additional assumptions on the system or on the uniqueness of the
solution, are presented. Also included are the relationships between
the necessary conditions of Pontryagin and the generalized programming
results. Between these optimization conditions, a link exists in the
dual veriables of the generalized program and the adjoint variables
associated with the optimal control problem.

To clarify the algorithm and indicate its computational feasibility,
a minimum fuel problem and a minimum time problem are solved in detail
in Chapter VII., The convergence properties and solution procedures are

illustrated with data obtained from computer runs.
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Chapter II

3‘ OPTIMAL CONTROL

AN T
1.\'%_!

oy This section defines an optimal control problem and Pontryagin's
Erir

.ﬁﬁ necessary conditions for optimality. The emphasis is on those linear
AR

Y systems for which generalized programming equivalents can be formulated.
(k
_Rz A, Definition of Dynamic Control Systems

At

ﬂ:x The basic control problem can be described by the differential

§§ equations:

.

ot

) dxi

;3 il =97 = f (x Xy Uy e, U t) i
'.

o (2.1) g
; i=1, 2 y by,

Al

i

]

NN

) where

i’

& | .

- mx, ()]

s 1

i) x(t) = . (2.2)
-

[\ - x_(t)

@ - n -

’-? is the vector of state variables or phase coordinates which describe the
Y

.Rg trajectory of the system in Euclidean space through time. The control
ﬁ% function is the vector of control inputs

‘-‘

B M, (1)

”{f 1

9§f

i u(t) = (2.3)
ey

¥ u (t)

1 = m -

[

e

?%s . which influence the state through the differential equations. The sys-
;# tem at some initial time, to’ satisfies the initial conditions,
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x(t) e s CE" . (2. 4)
(o] (o]

Thus the system may have an initial point x(to) at any one of the poin
in the set, So' At a terminal time, T, the system is required to lie

in some region, i.e.,

x(T) ¢ §.C o (2.5)

The time T may be free or fixed, and the sets, So and ST’ may be

fixed points.

B. Admissible and Feasible Controls and Reachable Sets

The vector control function, u(t) must be specified at every t

and is required to lie in an admissible control region, U where

_t)

u(t) ¢ Ut cE , Vt. (2.6)

Definition 2.1, An admissible control is any vector function, u(t),

f}‘ ‘w?;-‘-"{‘?‘% "'I";_ } 4“”",] (’-r'\f\"{ﬂ'mx)
} \ Wb H {"

for which

u(t) e U, c ", vt e [0,T] ,

where [0,T] denotes the time interval (t|0< t < T},

The objective of the control problem is to find an admissible con-
trol function that transfers the state from some point at to to an-

other point at T, while minimizing

= . e . (2.7
J ./: fo(xl, vees X ul, , um, t) dt )
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It is convenient at this point to define another variable ,

i it
xo(t) .j: fo(xl, ceen Xpa Uy e U t) dt , (2.8)

(o]

and to let

x (t)
o
x(t) = . (2.9)
x(t)

Thus,

x =1 (x,u;t) , x(t) =0. and J =x (T) . {(2.10)
) o o o o

Definition 2,2, The reachable set, denoted by R, consists of a set

v T

of terminal x(T) of admissible solutions to the control problem,

without the condition x(T) ¢ ST'

R, = {x ¢ En|x = x(T) ,

where x(T) 1is a solution to (2.1) at t =T with

x(t) eSS , u(t) ey , Vt)
o o t

Note that for the fixed final time, T, if

there is no admissible control to transfer the system from an initial

int i ) to a int i S,...
. poin n o point in -
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oy
;/,‘-1.1
i
Lk
h'ﬁ Definition 2.3. A control function, u{t), defined for ¢t « [tO,TJ is 5
Al e 3
:!r-"l a feasible control for the optimal control problem if it is an ad-
DALY ,
i'& missible control and transfers the system from some state x(t )«¢ S
o) 0
r to a state x(T) ¢ ST while x(t) satisfies (2.1). Note that a h
|
}}5 feasible control exists iff 1
& S. N R s
®) v Ry %
‘a1
Akt
;éfz In the optimal control problem, we are searching for a control
)
::..) function, among all feasible controls, that results in a minimal value
12,
13 ©
2
[${§ Assumption 2.1, We will now restrict our attention to func.:ons fi,
B8
,}_j for i =0, ..., n, which are autonomous, i.e., they do not depend
8" explicitly on time, We will also assume that the fi functions for
,.1:-‘:'; i=0,1, ..., n, are continuous in both x and u and are con- ;
AR
ok tinuously differentiable with respect to x.
<
"'"A:"\
:g : C. The Adjoint System and the Hamiltonian .
o
‘{.'L_’j-' For any given u or x(o), let x = x(t) be determined by
AN
et
e
- x. = . (x,u) i=0,1 ..., n.
sty i i
For this choise of u, x(o0), and the resulting x(t), we definc the
adjoint system, \}'0. ‘1’1, e o) \yn, by
d\yi n afk(x,u)
Yw =30 °" z 5% ¥y
i
k=0
e
i=0,1, ..., n , (2.11)
where the partials are evaluated at the above x(t), u(t), The solution
]
to (2.11) is related to the choice of control, u(t).
SEL-68-085 6
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The Hamiltonian is defined as

H(Y,x,u) = ¥'f(x,u) ,

where V' 1is the transpose of

M
o
wl
¥ = ,
¥
e n_
and
s f ,u
f{a o(x )
e 1, Gou
2
VP f(x,u) =
D
v
f (x,u)
—n —
Thus (2.1) and (2.11) become
. OH
= - 2.1
xi g\y—i- ( 8)
s OH
= - 2.11a)
Yl % ( a

e~——] T

=
—

q D. Pontryagin's Conditions for Optimality

e

-
-

(&)
'-. When the initial and final points, x(to) and x(T), are not

are assumed to be smooth manifolds or

0

fixed, the regions S and S
o T

convex sets. A necessary condition for optimality in this case 1s that

the solution to (2.1) and (2.11) satisfy a transversality condition.
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"ij Let x(to) € SO and x(T) ¢ ST be given points on the boundary of S
o
?'S and ST: and let Do and DT be tangent planes of So and ST at
:‘ these points. Then the solution satisfying (2.1) and (2.11) will also ;
N »
:ﬁf satisfy the transversality condition, if w(to) and VY(T) are the
[.\
j:ﬁ directions of the supporting hyperplanes, Do and DT’ of S0 and
AR
{4 S, at x'to) and x(T), respectively.
L Necessary Conditions for t < t < T. Let u(t) be a feas-
ph —
O ible control with a corresponding trajectory x(t). For u(t) = u*(t)
L to yield an optimal solution to the control problem, it is necessary to
! —
FU, have a non-zero continuous vector function V¥(t) corresponding to X(t)
33 and u#¥*(t), (2.1) and (2.11), aad satisfying the transversality condi-
i
(T, tions so that
}x:'
o
i ’\.""
e (1) For t e [t ,TI,
‘,‘ (o]
3 4
s - - Sup — = .
>0 HIX(U), u*(t), ¥(U)] = HIX(t), u(t), ¥(1)] .
K00 u(t)EUt
Y00
2 *
K >
L33 and
by
a N !
‘,J_A-n
Y (2) ¥y (T) <0.
1y
{}4
-'J."
O E. The Linear System and Control Constraints
e ]
,fﬂ A linear system is defined as a dynamic system in which the
-%;; fi(xl’ ceer X ul’ cees um) are linear in x and u for i =1, ...,
{jg n. Note that fo(x,u) need not be linear., This linear system can be
I‘% described by two matrices, F and G, as
19N . n m
B x(t) = Fx(t) + Gu(t) , x(t) € E , u(t) ¢ E , (2.12)
2%

LA

where F is an n X n real matrix and G is an n X m real matrix.

L)
ey , F(1-1)
1948 The linear system has a fundamental matrix [4] e that has

o

v
=
S

the property of transforming x(t) by:

l-
[

=

2

: =

Pl g
ety

o
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T
nj‘.
§§: -
el F(t, -t )
3 1 0
§ x(t)) = e x(ty)
;
VZ when u(t) = 0 for 7T ¢ [t tyt ] This fundamental matrix arises from
e the solution of the differentlal equations in (2.12) when u(t) = 0,
The solution for any function u(t) is

i

o\ F(t -tg) t, F(t -7

il x(tl) = e x(to) + ./. e Gu(T) dT . (2.13)

' t
0

) j
3 When u(t) € U for all t and x(t.) € S, the right-hand side
A t 0 o

f ' of (2.13) determines a point in the reachable set of Ut' So’ and time
;F tl. Hence we can state, for linear systems, |
ol

\;}

)lw

W 1

3:5; Rt ={x € E |X=x(tl) ,

1

: )

A F(t -t) t F(t,-1)

& 170 1

IgN! x(tl) = e x(to) + f : e Gu(Tt) dTt ,

".&;\; t )

] L

gh

4_3- u(1) ¢ Ut , T € [to,tll ) x(to) € sO .

I

4

.*:},}_:{

L L

’ Throughout this paper, we will consider problems where Ut =

Uc Em, i.e., the admissible control set is constant over time. We
also assume that U 1is a bounded convex polyhedral set, i.e., it is

bounded by hyperplanes in m-dimen.ional space. Note that any convex

polyhedral set can be expressed by
U={(uce E" |Au < b)

for some real fixed matrix A of dimension q x m and for some real

vector b of dimension q.
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£
In the following, we will permit the initial and terminal sets, So
n
and ST Cc E, to be convex sets, j
[
Note that fi(x,u) = f;x + giu, where fi is an n-dimensional ‘
Al "
vector and gi is an m-dimensional vector. fi and 8, are the it]
rowvs of the F and G matrices, respectively,
|
F. Loss Functionals
In this section, we will describe the different classes of loss
functionals. These loss functionals, when combined with linear systems
and the above restrictions, can be solved by mathematical programming
techniques that are developed and discussed in the next two chapters,
Case 1. Linear Loss Functionals.
We define the linear loss case as one that includes all loss func-
tionals of the form
‘
u) = f'x + g'u
fo(x, ) X B
1
wvhere f and go are any real n and m component vectors, respec-
o
tively. Thus, we can define linear systems with linear loss functionals
as completely linear systems,
Case 2. Minimum Fuel Problems.
A certain well-known minimum fuel problem is characterized by loss
functionals of the form
m
f(u) = zz [u,| .
i
i=1
Case 3. Quadratic Loss in Control, 1

We consider a function a quadratic only in the control vector,
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f(u) = u'Qu ,

where Q 1is a positive semidefinite matrix.
When a linear functional is added to f(u) and modifications of

Cases 2 and 3 are permitted, the three cases are:

f (x,u) f'x + g'u + f£(u) , 4
0] (o] o

0, Casel

where f(u) Zlui| , Case 2

e u'Qu , Case 3
R
)
‘t
wast (If fo(x,u) = f(u), then fo = 0, and g, = 0.) Thus the control
1 ' problem can be stated as
-
Jeu
%; Minimize xO(T) ,
iy
1 . _
0 X = Fx(1) + Gu(t) + f(u) UO ) (2.14)
]
A
el - -
o 1y
- where F = |====1=--=- >
0
% :
) . 1
) ] : 1 F
N i
\' 0 '
ik
".\‘;': ]
iﬁ €
N G = |oeme- .

B T Lis
Tl 15
<y

and
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1
0
U = € En q 4
0]
—o—

x(t)esS , x(t)=0
o o o o

x(T) € ST , and

S ,.
S

1
)

u(t) e U= (u e E"|Au < b}

(=R

£ gy ano
2 lvk‘g-.’.i-’?z" =

The minimum time problem is also concsidered where T is not fixed,

S and S are fixed points, and x (T) =T - t .
o T o o 1

For linear systems described by matrices F and G and a given

g

gﬂﬁ polyhedron, U, Pontryagin defines a 'general position condition." This

e

el n-1

W%# cendition is satisfied when the vectors Gw, FGw, ..., F Gw are lin-

7

~:? early independent in E" when w has the direction of one of the edges ]

of U. For such systems, at each point of time, ¢, the function 3
Y(t) 'Gu(t) achieves its maximum at only one vertex of U, except on a ‘
set of measure zero.

Before proceeding further with the development of an algorithm to i
solve these continuous-time control problems, some of the existing tech-
niques used in solution procedurecs should be mentioned briefly. Three

of these techniques are mentioned here,

Lirect Methods [5]. 1In these methods, admissible and, if

;;ﬂ possible, feasible controls are chosen to start. The gradient of the
IQ?] cost functional (or, if the starting control is not feasible, a
»és Lagrangian form that takes feasibility into account), with respect to
o
S the control function, is determined. Then, by using gradient or steepest
=B ]
E-b descent methods, a new control function is chosen to improve the ccst
S
i{ﬂ functional (or Lagrangian).
Sa%Eg
g~] Indirect Methods [6]. Indirect methods primarily seek solu- .
il.ll .'
3 7] tions to the necessary conditions for optimality. Some methods use
L
W{: SEL-68-085 12
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[A)
arbitrary initial or final conditions for the adjoint variable. In this

case, the differential equations, (2.1) and (2.11), are in:-erated to
find solutions for x(to); during this procedure, a solut® i to the
necessary conditions is retained, if possible. If x(to) is not equal
to the original (known) x*(to), the gradient of some cost functional,
based on the distance from x(to) to x*(to), is used to determine a

new guess for the final time adjoint variable values.

Discrete Approximations [7,8]., Mathematical programming tech-

niques, e.g., linear programming or gradient projection methods, are
usually applied to a discrete approximation of the continuous-time prob-
lem, In these approximations, the system is considered at a prescribed
sel of instants in the interval [to,T]. Only at these times are the

control inputs allowed to change. The differential equations are then

approximated by difference equations for each time considered. Math-

| ematical programming techniques are then used to solve the approximation.

? ; Each of the three techniques mentioned have their disadvantages.
O
3*% The direct methods' disadvantage is that a feasible control must be pro-

\ vided initially. If not, the convergence methods cannot be guaranteed to

terminate with a feasible solution. Also, the efficiency of convergence

'.
r,':l;. Y e

is highly dependent on the initial guess. The indirect methods also have

X
o CalTaly

a disadvantage in that they do not provide a feasible solution untili the

o

final step. At times, the determination of a feasible solution is the

major problem in optimal control. The basic disadvantage of discrete

5

approximations steas from the large number of variables or equations
introduced by the approximation process.
The methods developed in this work combine the features of both the
direct ana indirect methods and use admissible controls to find a fea- i
sible solution. This combination continuously reduces the cost while it :
retains the feasibility and converges on the optimum values of the ad-
joint variables. Thus the problem, at any iteration in the optimization
phase, has a feasible solution available, and the present solution has a

measure of closeness to the optimum solut:on [9].
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Chapter III
MATHEMATICAL PROGRAMMING

In this chapter, the algorithms available for solving linear and
quadratic programming are reviewed, and the theory of generalized pro-
gramming is described. The choice of the simplex method for linear
programming problems and the complementary pivot theory for quadratic
programming problems is dictated by the ease encountered in using the
parametric programming methods presented in Chapter 1V.

It should be noted that any bounded convex polyhedral set can be
represented (possibly after a change of variable) by the set
X = {x|Ax < b, x >0} for some real matrix, A and for some real

vector, b.

A, Linear Programming

The standard linear programming problem can be stated as

minimize 2z = c'x

subject to Ax (3.1)

IN
o
oo}
=]
o

X > o,

where x € En, ¢ 1is a specified n-dimensional vector, b 1is a speci-
fied m-dimensional vector, and A is a given (m X n) matrix,

Since minimizing c¢'x is equivalent to maximizing (-c')x, only
minimization problems are discussed. Hence, problem (3.1) seeks the
minimum of a linear (convex and concave) function over a convex poly-
hedral constraint set; if the latter is nonempty, a solution exists
and is known to be at an extreme point in the constraint set. Thus we
need only consider basic solutions to problem (3.1), i.e., solutions in
which no more than m components of the vector x are positive and
whose column coefficients are linearly independent in rows where Ax < b

is satisfied with equality.
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%‘ The dual problem to (3.1) cen be expressed by i
[\
4
_l
;% minimize v = by
&
) A
6:55 subject to A'y > c (3.2)
e .
;g.é y>0, yeE
g
}:R The duality theorem of linear programming can be summarized in two
AN
i ﬁ Statements:
e
& ﬂ (1) for any feasible x,y [satisfying the constraints of (3,1) i
BN
ol : and (..2)7,
O
L
i ' '
g ) c'x >b'y , and
o
? (2) for the optimal x*,y* of (3.1) and (3.2),
Al o]
" -n.¢l
ok
Y (Ax* - b)'y* = 0 l
§¥ complementary slackness conditions
: (Aly* - ¢)'x* = ‘ !
A
il
Qf If the x vector is augmented by m components to include slack vari-
3; ables and the matrix A 1is augmented by I, the constraint inequalities
Y
o are equivalent to
) \}{
A
;#_ﬂ Ax = b
t "\.
-..‘;31‘ (3.3)
W AN x>0,
L) -
i
i where A and x are now the augmented matrix and vector, respectively.
Since we need only investigate the extreme points of the constraint
set, we need only allow basic solutions corresponding to choosing m '
linearly independent columns of A,and the components of the vector x |
corresponding to the m columns of A. The m columns of the augmented
A form a nonsingular matrix B, called the basis matrix. The corre- J

sponding componeuts of x are called the basic variables. Hence, a
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basic feasible solution to (3.1) is one in which the values of the basic

variables are nonnegative, and all the other variables, called the non-

Qﬁ
it

F

] basic variables, are at value zero. Let Xg represent the vector of the

basic variables corresponding to B. Then the pbasic solution to the

linear equations in (3.3) is

T 255 wia & Fhnm
Al

x_ =B b,

Jq B
0
):' x, =0 )

;g 2L

I'!

5

$ where i 1is nonbasic., This is a basic feasible solution, provided
; x_ >0,

\" B -

The Simplex Method. The simplex wmethod is reviewed in detail,

since a variation of it is employed in Chapter IV for the parametric

programming procedures. This method is presented in matrix form. Here,

—— —

the linear program

‘i‘-“h“
-

minimize 2z = c'x

@

;a subject to Ax = b (3.4

R,

f X > 0

)
3 {
P is observed, and the augmented system of equations

4‘ | g
R l
A M

?‘ 1 -c' Z 0 -
;‘ = (3. 5)

.ﬁ 0 A X b f
K A
! . ,
= is used. i

2 Given any basis, B, 1let the augmented basis be ﬁ, where

oz}
P e e g B

kD 1 -c!

\1 E = )

{ 0 B

;
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and rewrite (3.5) as

where

o

Ay ugid Mo iatiad el iai
—c! P
B °R
B R
)
, and

B2 0 \ S5 1 kil Ma ki gat
Bl Vi 1y favitic/alavalakanabava e

Z 0
B |~ '
R b

*h

(3.6)

(3.7

Ry

A,
e

SR Al

CB is the vector of the components of ¢ corresponding to the basic
iabl g
variables XB _
Since B 1is nonsing lar, B is also nonsingular;
| 1 c'B-1 T
B
—-1
B =
0 gl
- -
-1 . q
Multiplying (3.6) by B and then rearranging it, we get
o —— -1— —  — N 1 —1
et —c! '
z 1 cBB 0 c +cBB R
= - Xp
- -1
*B 0 gt b B'R _
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By setting the nonbasic variables, XR' at level zero,

alSlea s

;g — T [ - — — - — —
’é S X 1 crBt 0 c'Bth cLxy
P
& ) ) ) ’
& Xg 0 p~t b B h 571y
v R R B | A S 4 L
|4
.;r“ 1
3 where x_ =B b

Sy

-1
If B b is a nonnegative vector, the basis B is feasible,

2
FAm |

and thus the current solution is a basic feasible solution.

- “.Mc-
ot o

s
s

Look at any variable x‘j with a corresponding column Aj

and a cost coefficient <c¢.; this variable's column in the transformed

system of (3.7) is

s

e g L

o

P B T N T o, e

i e
o ¥
I
ey

[ B A‘ ) (3.8)

=
|

i
iy - -f' w
D i e

- th
If x, 1is a basic variable, B 1Aj is the r unit vector, if Aj

4

iy

th
is the r column of B, (Note that, in this case, ¢, would be the

: th
rth component of CB’ and xj would be the r component of xB.)

Thus the first component of (3.8) bhecomes

o e .
T,

—c,+C'B-A,=—C,+C,=O;
J B J J

3 l'nj«.:, ‘1 &

moreover (3.8) is a unit vector.

R
g

Sl

=il , ,
Proposition 3.1, If all cj - céB Aj > 0, the current basis B is

optimal,

e i
et At A LI
~

2

Proof of Proposition 3.1.

LA

Assume O = c, - c'B-lA, > ), V.; then, from (3.7) and (3.8),
J J B J - J
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z =c'B 1b + ZLb,x,
3 JJ

Note that oj = 0 for |j corresponding to a basic variable. Thus any

change {from the current solution would result in an incrcase of some

xj (nonbasic), and the value of 2z would increase or remain unchanged.

Hence no improvement in the objeciive is obtained wvith any other

3;

solution.

y .E.D.

g ©

3

(2

& From . m 1, we have an optimality condition for any

Y

(W feasible basis;

b gt 0 v (3.9)
. =¢, ~¢c!'B A, > ) . 5

‘ J j B =" J

&

;;% If, on the other hand, the left-hand side of (3.9) was strictly negative,

B

?{! for some j = s, then increasing xs and adjusting the values of the

basic variables until one dropped to value zero (thus replacing a current

AT

basic variable) would decrease the objective function, provided xs !

4

i
%3

Q

entered at a positive level. The simplex method changes the basic set
at each iteration with the entering variable, xs, designated the non-
basic variable with the most negative relative cost factor, oj. The
exiting variable is the first basic variable to be driven to zero as

the entering variable increases cbove zero (assuming nondegeneracy and

ktounded solutions). The method terminates with the current basis being
optimal, when (3.9) is satisfied for all variables,
When the variable X is chosen as the entering variable, the

exiting variable can be determined by examining the ratios

(B_lb).
g2 | -—~if——i-, for all i, (3.10)
= | (87°A ) .
iy Sh
i r
b :
ﬁfs where (B As) ~ 0, From (3.7), the current basic variables are ex-
- 1 i
*gﬁ pressed as
i
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Thus the first variable driven to zero in the vector X5 is the one

'jﬁ corresponding to the minimum of the ratios defined by (3,10).

2 The simplex method can be carried out in two ways. The first
way (called the revised simplex method) is to substitute AS which cor-
responds to the entering variable xs for Ar which corresponds to the
exiting variable xr in the basis B, With this substitution both the
new solution and the relative cost factors can then be calculated. The

second way is to pivot in the augmented matrix

-1 0 cR cBB R

-1
about the term (B RS) , where s corresponds to the entering vari-
r
U able and r corresponds to the exiting variable, The pivoting opera-
tions do not change the canonical form of the basic variables which

remain basic, but they do force the column

to the canonical form of

th .
© where e is the unit vector with a one in the r component; this
r

will alter all of the other columns corresponding to the nonbasic
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variables. Note that once a feasible basis is determined, the simplex
method insures that all succeeding bases are feasible.

To obtain an initial feasible basis, phase I of the simplex method
adds artificial variables to (3.4) and solves a new linear program. Let
E be an m X m matrix with only diagonal terms, and let e,, = +1, if

11

bi > 0, and eii = -1, if bi < 0; then, the new linear program is

m
min z = ZE v,
i

e
[y

x>0, v>0, (3.11)
and the solution terminates in a basic feasible solution to (3.4), when
the simplex method is applied to (3.11). The optimal value of 2z 1in

(3.11) is zero iff (3.4) is feasible.

F. Quadratic Programming

The standard quadratic programming [3] problem can be stated as

minimize z = e'x + x'Qx

subject to Ax b

v

X

v

o, (3.12)

where x ¢ En; ¢ 1is a specified n-dimensional vector; b 1is a speci-
fied m-dimensional véctor; A is a specified (m X n) matrix; and Q
is a specified (n X n) matrix, It is hereby assumed that Q is posi-
tive semidefinite.

Since problem (3.12) is a convex programming problem, the Kuhn-

Tucker necessary conditions are also sufficient conditions for optimality.

Thus a sclution, x, to the following necessary conditions is an optimal

solution to (3.12),
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u=c+ 2Qx -A'y >0
i ]
v ==b + Ax > 0 :
X >0
¥
y >0 !
u = - i : ?
X34y 0, Yivy 0, Vi . 3.13) h
If we define i
T u X g
|
w = s z = ’ :
L.V y
2Q  -A' c ¢
M = , and q = , ﬂ
A 0 -b
|3

the necessary conditions may be written as
w =Mz + q
(3.14)
w,z >0, Wiz = o, Vi =1, ..., p, |
where M 1is p X p. Ik

Complementary Pivot Theory. Problem (3,14) is a statement of

the fundamental problem of the complementary pivot theory [3]. Although v
(3.14) is solvable by this theory for various classes of M, the dis- ?
cussion here will be restricted to M being positive semidefinite, as

it is in the quadratic programming problem (3.12).

Note that we are looking for a complementary solution to the .

linear equations in (3.14), i.e,, a solution to b
\3

w =DMz + q, 3
23 SEL-68-085 1
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= 0, Vi, We will initiate with a solution that is comple-

oy Sy W T ik

witl
1 Wizi

mentary but that may not be nonnegative. We will then retain this

(J

-
-
¥

ot
ig complementary property while seeking a nonnegative solution. <
) ¢
f £§ The problem in the structured form of
T
o
. z z
o 1 p
L)
P W q m ~
f.*@;,-' 1 1 11
‘mtd
.‘T;,\lf‘. . . .
b S IR ' ’ (3.1%)
J\ : w q ~ m
gf p P pp
&
P
)4Rg is observed with the transformations being made by substituting a vari-
T
?c%} able 2, (or, in later steps, some wi) in the extreme left column,
()
N replacing a variable in the column, and then pivoting on the system of

equations by changing the column ¢q and the matrix M. The variables
in the left column are called basic, and the variables in the row above
the matrix M (or M after transformation) are called nonbasic. The
problem is initiated by setting wi = qi and zi =0 for all i. 1If
any qi is negative, pick the wi corresponding to min qi, and let it
be a distinguished variable., The following can be taken as a genersl
iteration,

Increase the complement [defined by (3.14)] of the distinguished
variable and determine the blocking variable which is either

(a) a bhasic variable being driven below its lower bound (usually
zero) by an increase of the driving variable, or

(b) the distinguished variable which is driven toward zero.

[The first variable to block in either (a) or (b) becomes the
blocking variable.]

If the blocking variable is not the distinguished variable,
then replace the basic blocking variable with the increasing nonbasic
(driving) variable by pivoting about the point Ers in the matrix M,
where ﬁrs is the term in the current matrix that corresponds to the
st column (the driving variable) and the rth row (the blocking vari-
able). Now increase the complement of the former blocking variable

(now nonbasic) until a new blocking variable is found.
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g
Y
A5
5; I{f the blocking variable at any stage is the distinguished
K\/
{ variable, make it nonbasic at value zero and make the driving variable
-y
?h o basic (by pivoting).
;. At this point, a complementary solution exists. Then look
'ﬂ at all ﬁi (determined after pivoting) and choose the most negative to
;;' determine the new (basic) distinguished variable. The algorithm termi-
.k nates when all Ei > 0. The nonbasic variables, placed in the row above
the matrix ﬁ, are at level zero, except for the driving variable, at
, .
4, any time.
§ The pivoting rule is: pivoting on mo
) 1
" o=
) M
&)
:
;ﬁ m
‘ ﬁ' = ——15 , Vi }é r
4 is m
d Irs
%:
o
f% -m_ .
o, =—3 ,  Yj#£s
rj m
rs
mi m .
m,. = mi' - —75—32 R Vi £ r
= d rs
j#s
Let q, = m'O and apply the pivot rules given above. For basic vari-
i i

ables that correspond to negative qi and not distinguised, we define

their common lower bound to be
B < min q;

instead of zero. Thus P is the lower bound that blocks the decrease

of a basic variable.
It has been shown by Dantzig and Cottle [3] that the algorithm

terminates in a solution to the quadratic programming problem when (3. 14)

has a feasible solution.
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C. Generalized Programming
The general. red programming problem can be represented by
L]
, n
Choose a vector, P, in a convex set, C<; E", such that we
maximize A
subject to UOK + Py, =8 (3.16)
=1 p>0
where U0 and S are specified n-dimensional vectors, and p is a
scalar. [The results here are easily applied to an extended form of
(3.16), where the linear equations become
A+ P + P + ... + P = S
Yo 11 2H2 aq
4
|Ji =1, Vi N
s
and each Pi is drawn from a convex set Ci']
*
Thus, we are looking for some vector P or a convex combination
i %
of vector P1 , all in set C, so that the linear equations are fea-
sible, i.e.,
*
U07\ + P =38 (3.17)
or
ix
U A+ i; P =S
L Hi
i
=1
S
¢
by >0, (3.18)
an¢ the resulting value of A is a maximum over the choice of all the J
elements in set C, which satisfy the linear equations. Note that, if
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i
any set of P is in C, any convex combination of that set is also in

C. Hence (3.17) and (3.18) are eq.iivalent when

* ix
P = P
Z Hi

The solution procedure assumes we have on hand, initially, n
particular choices of P1 € C so that the following linear program g
(called a restricted master)

mﬁx A

: 1 n
subject to UOK + P uy ¥ ...+P by = S ?E
i ‘:‘ﬁ
YRS

Hy * oo tp = 1 ik

(3.19)

(A%
o

Hi

i TR
A -l

has a unique, feasible, nondegerate solution with the basis being

g
4 T

defined as

e

B @l

L

o
=
e~
jav]
e no

gz
oL x

L

?

LUy o
t_‘t. a

) i
and being nonsingular (by definition). Since for each P ¢ C, P =

25 plpg, where pg is a solution to (3.19), is in C and is a

T E.—_/-.—:— ————
1

==

Py

feasible solution to (3.16), but not necessarily the optimal solution.

0
To test P [and hence, any solution to (3.16), generated from a

&

- 0 . . .
basis] for optimality, a row vector i = T is determined to satisfy ’&
Y3
3
0.0 (3.20) ¥
B = (1,0,...,0) . ) =
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. — . n+1 . . . .
From v, we find a vector P , which ig not necessarily unique, and

a value ¢ so that

_O=n+1 min —0—

O=TP = peC TP, (3.21)

—_— P
vhere P = []] . If o5 =0, the current solution is an optimal one.
. . n+1 . .
If o< 0, (3.19) is augmented by P and the new linear program is

then solved. The general iteration starts with a solution to the re-

stricted master program

maximize A
n+k
subject to UA + s;‘ Plp.
0 - i

1

1]
wn

1
§ =1 1
Hy

0. (3.22)

v

k k
Let B be the optimal basis to the linear program (3.22), and let T ,

the dual (optimal) variable to (3.22), be defined analogous to (3.20).

Kk +k+1
Then, o and Pn o are found from the subproblem,
k= in _k—=
find Ok+1 : rrkpn+k+1 _ min n{P . (3.23)
PeC
k+1 th | .
f o = 0, the solution to the k ! iteration of the master
k+1 +k+1 ..
problem is optimal. [P S < 0, then Pn can be adjoined to
Jk+l
(3.22), and the solution to (3.16) is improved. The value -5 is

~he maximtm amount by which the value of the current basis Kk can be
improved. Thus, A - ck+1 constitutes an upper bound to the optimal ‘:
solution of (3.16). It is known that these upper bound evaluations can
vary considerably from one interation to the next. Accordingly, the

least or these evaluation: is saved from all iterations, including the

ctirrent onc,
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3“3 It has been shown that, if C is bounded and the initial solution

ot —I _* ! *

2 d to (3.19) is nondegenerate (“i > 0), T 5T and P 5P [where

i ;
" :
Au% 7 n+k E
f\‘ k* _ - i &
| Po= 2 Py ]
i=1 i
vL g

- and My is a solution to (3.22)], on a subsequence k, and that P = P

K *

b is optimal for (3.16). ™« satisfies the properties

X

EAR _*

s T #0 :
. (3.24) o
;1 *. k% :
M. TP>FTP =0, for all P e C .

al -

0

;f Moreover, if C 1is a polyhedral set, then the subproblem (3,23) is a

:?. 3 linear program, and the iterative process terminates in a finite number

%? of steps, It should be noted that, in any case, the objective function

3

)

improves with each iteration, and a feasible solution always exists to

the master problem, Also, the initial solution (or columns) for (3.19) '

]

can be obtained by a procedure similar to a phase I simplex method.

b ol ;ioil 5
>

Remembering that the usual form of a generalized progrem includes

i,

<)
LAt P

i
ﬁﬂ the sum of the vectors Pi € Ci’ where the Ci are convex sets, the

4,. vector S need not be fixed, but it must be drawn from a convex set, 4.

gi Thus the generalized program becomes

"{3' ,
ﬁ” max o

3& P, S

.. U}\+PH—Sv=O

‘J‘j “ = 1

28

) y =1, (3.25)

i3 s 3

where P e C and S € 4. In this case, the subproblem is extended to

k
find o) as in (3.23) and
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=
wn

= min

Sed ,

- S 1 k
where S = [i]' If b( or A < 0, then the corresponding vector or
vectors is entered into the master problem. If both 6k and AB =

the current solution is optimal.
The generalized programming problem,

max
A

Primal:
rima p

UOA + Py =8

p=1
PecC (3.16)
i
has as its
/
Dual: find a vector T so that
T [f] > o, YPe C
4
i [f] =0, some P e C

(3. 26)

Al
(=
o
o
| C——
1l
Juy

This dual is the equivalent of finding a particular hyperplane to support

the convex set C. If a solution to the dual is known, then a solution
*

to the primal may be found using the dual solution, T , to find the

*
vectors, P ¢ C, that satisfy

Y|
il
o

* ¥
I1If P is unique and the primal has a solution, P must be the solu-

* b
tion, If P is not unique and the primal has a solution, then some . ]

*
convex combination of all the P must form the primal solution,
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Chapter 1V

PARAMETRIC PROGRAMMING

In this chapter, algorithms are presented for solving parametric
linear and quadratic programming problems, wh2re the dependence on the
parameter is nonlinear and occurs only in the linear part of the objec-
tive function. These parametric programming problems arise in the sub-
problem of the generalized programming formulation of the o, ‘imal control

problems,.

A, Parametric Linear Programming

We consider the following problem linear in x

*
find x (t) to

minimize y(t)'x

subject to Ax b
x> 0

te [Tl,Tz] , (4.1
and the following problem quadratic in x

*
find x (t) to
minimize y(t)'x + xQx

subject to Ax b

v

x > 0
te [T ,T. 1. 4,2)
[1,2] (
In both of the above cases, A is a given m X n real matrix, b
is a given n-dimensional vector, Q is an n X n positive semidefinite
n
matrix, x 1is a vector in E , and

y(t) = [71(t), cee 7k(t), 7N(t)] (4.3)
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x

and s
ki

i

Ski+l

e Wo‘"a"'d'

these /k(t)

is a given vector valued function,
1o some homogeneous,

efficienrts that may depend on k.

= — 7*(t)

N (O = 25 Pri

ki(t) is a polynomial with real coefficients of degree m

N
i=

1

are constants so thaw, if

is its conjugate and pki(t) =D (V.

equation with constant real coefficients of order N

dt

{4

.q? ot the proposed algorithm,

 %§

;ﬁ Lemma 4.1. If ,_(t)
A
?“ﬁ“

%‘ some t =t
SN 0
Q4,ﬁ

\
et
AhY
7 (1)
tO
then (1) =

Proof of Lemma 4,1.

e

SEL-68-085

solves

0 for all t.

an equation of the

32

Such 7k(t)

m ., =
ki

each component of which is a solution

linear differential equation with constant real co-

are of the form

(4. 4)

ki

N

S  is complex for i odd,

ki

. It follows then that
ki+1

are real-valued functions of t.

The lemmas and theorems that follow are required to show convergence

is a solution to a homogeneous linear differential

and if for

"y (01

= —— =0
dtN 1

form

——_ ™




N a7,,(t) RN e
— () =a s (t) + a + + a
at 0 1 dt N-1 at¥
’ (4.5)
At t = tO,
R
—5 7%(V) =0 . (4.6)
dt tot
"0

By taking the derivative of both sides of (4.5) and substituting (4.6),

If this procedure is continued, all derivatives of 7*(t) at t = to

¢ become zero. Therefore, with 7 _(t) =0 and all of its derivatives at
zero for t = tO and with 7*(t) being able to expand (at t = to) to
a Taylor series, 7*(t) must be constant and have value zero for all t.

Q.E.D.

R

Definition 4.1, A vector y 1is said to be lexicographically greater

hovigs

than zero, if at least one component is non-zero and the first such

e,

=2

X

component is positive; this vector can be denoted as

x

;4ﬁﬁ;£§}4

ye 0,

L Tl

o 453 My
LR

i

A vector y 1is lexicographically greater than a ve..or z,

,_?§;me
Pt

vy z

3 if y -z e 0. A vector is said to be lexicographically greater or
equal to zero, if it i - lexicographically greater than zero or equal

to zero.
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-1,

s

§ ‘}'.‘, v'.’ )
#¥ A similar definition is true for one vector to be lexicographically

S8

‘%q greater or equal to another vector.,

| 7
wd

‘-
o

De ‘rnition 4.2. Let 7*(t) be a real scalar function of t. Then the

2

N-component vector D_ (t) can be defined by its components
£

! t‘- w‘-' —H“P

1

-1
d 7*(t)
Ve i dti-l

Thus the vector function D7 (t) is defined by the function 7, ()
*
and its first N-1 derivatives.

Lemma 4.2 [10]. If f(x) has a derivative at ¢ and f'(c) > 0, then 3

a positive number © exists so that for c < x< ¢ + 8, f(c) < f(x).

Theorem 4.1. Let 7 (t) be a member of the class of solutions to ho-
th
mogeneous, constant real coefficient, N order, linear differential
equations, and let D_ (t) exist as it is defined iu Definition 4. 2.
*
Then, if D) (t ) =0 or if D7 (to) >~ 0, a ®>0 exists so that
*
2,(t) >0 when te [to,tO + 8).

Proof «f Theorem 4,1,

If D (to) = 0, then, according to Lemma 4.1, 7 .(t) =0 for all
¥
t and O =
If D} (to) > 0, either 7*(t0) > 0 or its lowest order

*
derivative--one that is non-zero at t = to--is greater than zero. If

/*(tO) > 0, ‘then, by continuity a © > 0 exists for 7*(t0) > 0 when

t e [to,to + 9). If (t ) =0, 1let the lowest order, non-zero deriv-
ative at t = to be the Jth derivative, and let
{3
j-1
d
rY = . ¢
£(t) 3.1 70
dt ‘
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Thus f'(to) > 0 and, by using Lewna 4,2, a O does exist for

to <t <L to + O, so that

@t adt {
7 (t ) = £(t)) < £(t) = — 7. (1) ,
T 351 % - *
atd” 0 atd~t
|
From Taylor's theorem, it is known that a number 1T, between to ]
and t, exists for any given t,to <t< to + & and
Jj-1 .
d d j-1
7(t) = 7 (t ) + — y (t ) (t-t ) + ... + — ———— 7,(T) (t-t ) .
O drTm 0 (3-1ratd™ 0
Since
j-2
d d
t = = S poa & =
7S O) It 7*(t0) " J — = 7*(t0) 0 |
and
1
3-1 4d-1
7.(T) > —T 7% (t ) =0,
atd ™t dt’
SNy
's-"..'l
ﬁﬂ§
‘}% 7*(t) > 0. Hence, it follows that 7*(t) >0 for all t e [to,to + B).
ephag
oty Q.E.D
Fa
'-'_'.‘;:"':
”;1 The first algorithm presented here is based on the simplex method
‘ihﬁ and solves problem (4.1).
'-l:"'..\) 3
* {
e ¢ Find x (t) to
s
Ay
N minimize y(t)'x ]
Ml
AT B subject to Ax = b,x > 0, te[T,T,.]
j! '.' ~ — 1 2
e dy
RN
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Here, y(l) is a vector whose i component, 7i(t), is a real scalar

let B be an optimal basis for the linear

function. At tim t
n e 0’ 0

program

minimize 7(t0)'x
subject to Ax = b

x>0 . (4.7)

Let the solution be x = x*(to). Since x*(to) is a feasible solution
to Ax = b,x > 0, it remains a feasible one to problem (4.1) for all
t, but it is not necessarily an optimal solution. Thus how the opti-
mality test for B0 varies as t takes on the values t =t  + ¢,

0
where ¢ > 0, must be investigated. Let

_ _ ) -1
7k(t,B ) = 7k(t) - 7g (t) BO Ak , (4.8) o

0

sams

0

st

tl
where A1 is the k ! column of the matrix A,
<

v
- ing > .9
€ = inf [e[yk(to + e,BO) <0}, and (4.9)
3 = i (4.10)
€0 mén tk .
It is possible that the 60’ presented above, is zero, 7k(t,Bo) is
the relative cost factor for any t of column k when B0 is chosen
as the basis., Then the ordering of columns A can be taken so that
j/; Al, 00y Am correspond to the m columns of BO.
T For any basic variable X associated with the optimal bas:s BO,
iy
- 7.04,B) () (t) B 'A () - 7.(t) =0, Vt
2 ) 754 =7, - 7g oM =y -7y = 0, : =
, 0
E) (4.11a)
B
s And, for t = t_, .
o 0 .
‘-ﬁ 7 (tgrBy) 20, Uk, (4.11b)
"'-\/
,"(\'-. "
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with equality being held when k corresponds to a basic variable.

Therefore, the solution to (4.1) remains optimal, i.e., it satisfies

, (t B ) > 0 when t ¢ [to t0 + € ) for some eo > 0, given by (4.10).

Let 7" (t B) be the jth derlvative (with respect to t) of the

relative cost vector 7(t,B) when B is the basis under consideration.
Let 7i(t,B) be the comp:nent of the above vector corresponding to
column k of A. Let A be the new linear programming matrix ob-
tained after deleting all columns (variables) for which the relative
cost factors 7k(to,Bo) = 7§(tO’BO) are strictly positive for t = to

A general iteration is given with tO = Tl; a flow chart of the algorithm

follows the iteration.

Step I: Solve the linear program

minimize 7(t0)'x

subject to Ax = b
. x>0 (4.12)
to obtain the optimal basis B.. If the solution is unique at t+

0 0
(i.e., all relative cost factors for nonbasic variables are strictly

positive), proceed to Step III.

'E_ If the solution is non-unique, fix t = tO and proceed to Step 1II,
q.
-Qﬁ starting with j = 1 and AO = A,
e}
_:H'
g .
éﬁ Step I1I: Let the matrix AJ be composed of the matrix Bj_l and all
- | —_
‘f k columns of A~ having the relative cost factors 7j 1(t0,B‘_j 1) = 0,
ol il -
é; where 7J l(tO’Bj—l) refers to the (j—l)St derivative, To simplify
ey notation in (4.13) below, let the new x any 7 vectors corresponding
,;_ n to AJ also be denoted by x and 7, although they are now shortened
'f? x and 7y vectors. Then, solve the linear program
o
L
ﬁaﬁ
.\'
b\,
e
“» 37 SEL-68-085
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minimize 7J(t Bj— ) 'x

subject to AJx =b

x>0 . (4.13)

Let Bj denote the optimal basis. [Conputationally, it is convenient
to start with the previously optimal, basic feasible solution corre-
sponding to j-1 and then to apply the simplex method to obtain an
optimal solution to (4.13).] If the solution to (4.13) is unique or if
J=N-1, use the optimal basis Bj and proceed to Step III.

If{ the solution is non-unique and j < N - 1, increase j by 1

and repeat Step II.

Step III: Using the optimal basis from Step I or II in place of B0 in

(4.8) and (4.9) for all columns k (optimal basic columns can be ignored
since their € = +oc) find € Then calculate €0 The solution,

* -1
x (t) = B b, 1is then optimal for all t ¢ [to,t" + eo]. Moreover, it

[

will be shown that €. > 0.

0
If to + €0 Z T2,

However if the solution is not reached, repeat the general iteration

the parametric programming problem is solved.

with t1 =t + 60 replacing t

0 0’

That this algorithm does terminate in a finite number of steps to
a solution of (4.1) for all t € [Tl’TZ] remains to be shown. The re-
mainder of this section is devoted to showing a finite number of steps

to the solution.
Lemma 4.3. If the relative cost factors for some basic B0 are zero for

a subset of columns S and positive for the remaining columns T,

then the same 1s true for any basis B1 whose columns are in §S.

Proof of Lemma 4. 3.

The vector of coefficients of the objective equation of the original
matrix can be replaced by the relative cost vector for BO' The price

vector no of simplex multipliers relative to B0 satisfies =« BO =0

SEL-68-085 8
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to = T1 TERMINATE
+ YES
Solv i | % NO
olve Linear Program — Is to > T2
min 7(t0)’x I
Ax =b n
x>0 Replace tO with "0 + €
Are all nonbasic Find ¢,
7 tg By > 0 + L
? YES .| Find Ek' k nonbasic )
‘NO ‘ ]
4
Let j =1 K

Drop all columns of k for which

Jl .
. (t Jl)/o

to form AJ matrix and

shortened cost and x vector.

Let

=3 _d =31
7 (t,B) = at ! (t,B)

and solve linear program

oA

(with above basis as start)

’?_1 S g gy

min 7J(t0,BJ_1)'x

AJx=b

ol
'
)

Osans

x_>_0

Get B
J

i Are all nonbasic

o -j(t_,B,) >0

Wl 73( 0'"J —————— YE§ ——— =
ool ?
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I Replace j with J§ + IJ
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FLOW CHART FOR PARAMETRIC LINEAR
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1
and that of =n B1 = 0, since the objective coefficients for both
0
columns of BO and B1 are now zero by hypothesis. Hence 15 =1 = 0,
and it follows that their relative cost factors are identical.

Q.E.D.

Theorem 4.2. At the end of the general iteration, the following vector

i' relations are satisfied:

\ DIy, (ty,B)] = , > 0

N-1
— 7, (t
dtN 1 k

B) ;
0’ ’

ot

e
A
|
I

o zfx
oD

SR R

or

Il
o

for all k

?

D[7k(t0, B)]

where B 1is the final basis on terminating the iteration of
Step II at to.

Proof of Theorem 4. 2.

For k corresponding to the basic variables of (4.11),

D[/ (t ,B)Y}= 0, For the basis B, 1let the basic variables be XB’

and let the nonbasic variables be xR. The problem is separated as ’1
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B
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IR By pivoting on the m + 1 rows of (4,14), the first m columns are now
%;4?‘ unit vectors, and the system becomes
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where 7R is the relative cost factor vector of the nonbasic variables.

R 1is separated into two matrices, El and ﬁz, so that the relative

cost factors corresponding to the columns of R

s, T
> ot ek
., ?. S

YL
Pt )‘\
fy 2l

e
b=
A2
? o
A Gt

~!
= e

oy

are zero, and those

1

correspondiné to the columns of R are negative. Then, the problem

Y 2
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NEOE
9hY .j
3%?3
s -
o rows G T =
1,...,m TRt R S B
’ ] ) : 1
'
X—
2
*B
1 !
row f i~ =
z - 01 0+ yL (t B) £ 0 X= =z
m+1 . ] R2 0’ Rl 0
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i 1 : 1 (4.15)
e
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is observed, where only the variables corresponding to the columns of

R1 and I are allowed to enter the basis,

According to Lemma 4.3, the pivoting procedures of the simplex algor-
ithm retain the zero elements of row m + 1 at level O and the positive
elements of row m + 1 are at positive values for every stage; these
procedures terminate with all relative cost factors of row m + 2, corre-

sponding to I and R at nonnegative values. At termination, because

1)
of the simplex method stopping rule, a new set of basic variables is found
having the property of the components of the basic variables in rows m+ 1
and m + 2 being at zero (after pivoting); the components of the nonbasic

variables are either
(1) zero in row m + 1 and nonnegative in row_ m + 2, for vari-
ables corresponding to columns of I or Rl in (4.15) or
(2) strictly positive in row m + 1, for variables corresponding
to columns of R2.
If the variables are as in (1) above, the ones having zero components
in row m + 2 are chosen with their columns for consideration in the
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